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Cluster distribution in mean-field percolation: Scaling and universality
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The partition function of the finitg-state Potts model in the limi— 1 is shown to yield a closed form for
the distribution of clusters in the immediate vicinity of the percolation transition. Various important properties
of the transition are manifest, including scaling behavior and the emergence of the spanning cluster.
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I. INTRODUCTION grail” of cluster statistics is the distribution functionf,, the
average number of clusters containimgsites. Given a suf-

One of the aspects of bond percolation that has captureficiently well-characterized generating function, one can, in
the imagination of researchers is the collection of scalingrinciple, reconstitute the distribution function, by a form of
properties that emerge in the vicinity of the transition atthe inverse Laplace transformation. The fact that the gener-
which the spanning cluster emerddg. These scaling prop- ating function is consistent with scaling leads to general in-
erties manifest themselves in various correlation functionsterences with regard to the form of the cluster distribution
They also control the distribution of clusters in the vicinity function. However, detailed and specific behavior of the
of the percolation transition. An adjunct of these scalingcluster size distribution can only be derived from a specific
properties are quantities that armsiversalat the percolation form for the generating function.
transition. Universality reflects the insensitivity of behavior  In this paper, we extract, from previously derived results
at and near the transition to details, and follows from thefor the generating function of a finite percolating system, a
dominating influence of long range correlations. In this re-closed-form expression for the cluster distribution function.
gard, the percolation transition is an example of a criticalThis closed form displays key attributes of the transition,
point. The generating function for cluster distributioftse  including consistency with scaling and the separation from
Laplace transform of the cluster distribution functigplays  the distribution of a single large cluster that, in an infinite
the role of the thermodynamic potential. system, becomes the spanning cluster.

The extension of scaling to finite systems is, in principle, The closed form described above is tested against the re-
as straightforward for the percolation transition as for consults of simulations, and agreement is documented. In the
ventional critical phenomena. Finite size scali@dis based case of systems for which the percolation transition has oc-
on the assumption that the extent of a systemhas “na-  curred, the convergence between theory and simulations is
ive” scaling dimensions, in that it enters into thermodynamicslow. However, the evidence for convergence is sufficiently
functions only in combination with the correlation length  strong that we are confident in the accuracy of the theoretical
through the ratid_/¢. model.

There are, however, difficulties in the application of stan- The present calculation is relevant to long-range percola-
dard field-theoretical methods to the study of the percolatiortion, in that bonds can form between sites separated by an
transition in a finite system. Bond percolation reduces to arbitrarily large distance. This model is a poor representation
¢° theory[3]. Because of this, there is no immediately ob- of the kind of bond percolation that occurs in most physical
vious way to construct the version of mean-field theory thatsettings. On the other hand, there is every reason to believe
commonly applies to finite systen¥]. The integral over the that it generates the proper mean-field limit for short-ranged
exponential of the free energy is not nominally convergentpercolation[9]. According to well-accepted results based on
However, previous resear¢h,6] has led to the development scaling considerations, the mean-field theory of the percola-
of a method for the construction of the generating functiontion transition is asymptotically accurate for short-ranged
for percolation on a finite lattice in the case of both long-percolation in more than six spatial dimensid8s Finally,

[7,8] and short-range percolation. This approach avoids théhe strict mean-field model of percolation is also a model of
singularities that are inherent in the standard implementatiomterest in its own right in the context of the theory of ran-
of the integral corresponding to the mean-field limit of thedom graphg10].

finite size partition function. However, the derivation is not In this infinite-range model of percolation, the probability
rigorous, and, for this reason, there is room to argue that théhat a bond connecting two sites is “active” scales inversely
problem of the field theory of percolation on a finite lattice with the number of sites in the system. On the other hand,
has not been entirely solved. any such bond can form between any two sites in the system,

As noted above, the field-theoretic approach yields then contrast to short-range versions of the model, in which
generating function for cluster statistics. However, the “holyactive bonds connect only those sites that are reasonably
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close to each other. If the probabiliBy that a given bond is
active is of the formP=p/N, whereN is the number of
sites, the percolation transition occurs when 1. Critical
exponents at the transition take on their mean-field limits. To
be specific, the correlation function exponeris equal tos, ~
while the anomalous dimension exponenis equal to zero. 60
The thermodynamic exponents are all expressible in terms of
v and 7 through scaling and hyperscaling relations. When
the system’s dimensionality enters a scaling or hyperscaling
relationship, it is commonly set equal to the upper critical
value of 6. It should be noted that the “proper” dimension-
ality for this system is infinity, in that, in the thermodynamic
limit, the effective coordination number is infinity.

The analysis of this model exploits the connection be-
tween the percolation generating function and the statistical
mechanics of the one-state limit of tlyestate Potts model
[11] established by Fortuin and Kastelejyi®?]. A number of Ap
field-theoretical treatments of percolation are based on the c_ 4-2a- 2—a-
above relatior3]. P Nm=|Ap| BX( m|Ap| g W) 2.6

When there is a finite number of sites in the system, the
cluster size distribution incorporates the number of sites,
The generating function for cluster sizes is given by by taking on the more general scaling form

Apl?” A
F(p.h)=> nS(p)e ™, 2.1) nﬁn=|Ap|4—2a-5X(mlAplz—“‘ﬁ, &—p)
m N ’|Ap|

FIG. 1. The contour utilized in the evaluation of the integral in
3.3.

Il. BRIEF REVIEW OF SCALING

2.7
wheren( (p) is the ensemble average of the number of clus- . o . .
ters containingn sites[12]. In the vicinity of the percolation !N the mean-field limit, the exponentis equal toz, and, as
transition (p~p., wherep, is the critical probability the noted above, the dimensionality is set equal to 6. The way in
generating function takes on the scaling form which the number of sited\l, enters reflects the fact that it

scales as thdth power of the linear exterit of the system.
Ap
"|Ap|) IIl. CLUSTER SIZE DISTRIBUTION

(2.2 The distribution of cluster sizes in mean-field percolation

The exponent& and B, which Correspond to the thermody_ follows dil’ectly from the application of the connection to the
namic exponent& andﬁ [13], control the asymptotic behav- Potts model. TI:“S result was based on an -analyS!S -Of the
ior of various aspects of the cluster size distribution. Formean-field version of the-state Potts model in the limd

example, théth moment of the cluster distribution function, —1 [5]. In the calculation leading to a closed-form expres-
given by sion for the generating function of the mean-field Potts

model, limits were taken in the proper order, although the
final result was obtained with the use of nonrigorous argu-

F(pe(1+Ap),h)—[Ap[>~“f [Ap|F"* ?h

| S ming, (_1)|WF(p’h) o \s ments. Making the replacements
m)= = , . B
{m =.np, F(p.,0) @3 p=1+N"13;, (3.1
acquires a scaling form that is readily obtained from Eqg. h=HN"23 (3.2

(2.2.
In the mean-field limit, the two exponenssand 8 take on  then the generating function takes the following form:
the following values:

> = [—(L-t® ¢
1 F(p,h)ﬂf dA f ex T_E_AL dL}Im
a=2—dv=2—6><§=—1, (2.9 > 0
x3
d—2+7 1 6-2 xln{Jcexp{(A+H)x+€dx +K.. (3.3
B:VTZEXT::L (25)

The contour integration in Ed3.3) is over a contour in the
The scaling form in Eq(2.2), along with the relationship complexx plane that extends from o on the real axis tee
between the generating function and the cluster size distribialong a curve, making an angle of 60° with respect to the
tion [Eqg. (2.1)] implies the following cluster size distribu- positive real axis. See Fig. 1. For details, see Ref. The
tion: Appendix contains a heuristic derivation of the expression in
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FIG. 2. The CLUZ%GV size distributionf,, multiplied by N2/_3: FIG. 4. The cluster size distribution wher: 1. The system is
plotted againsmN™<~, wherem is the size of the cluster ardis  just above the percolation transition, and the incipient spanning

the number of sites in the system. The graph in this figure i for cluster has begun to emerge. The signature in the distribution func-
=—1, where the quantity is defined in Eq(3.1). The system is  tjon is a barely visible feature.

close to the percolation transition, but the transition has not yet been

reached. Note the excellent agreement between the solid curve, reB-. th itical di ion f hort bond
resenting the predictions of E¢B.4), and the results of simulations €ing the upper critical dimension for short-rangé bonad per-

for N=10 000, 40 000, and 400 000. The quantities plotted in thisc0ation [3]. In addition, it constitutes the “zeroth order”
and in all subsequent figures are dimensionless. distribution, about which one expands to obtain the cluster

size distribution in bond percolation in lower dimensionality.
Eq. (3.3). This derivation is based on the evaluation of the TWO characteristics of the distribution function in E§.4)
Ginzburg-Landau form of the partiton function of the &€ worthy of note. First, there is the fact thaisitn a closed
g-state Potts model. form. Second, there is the fact that the expression contains

The inversion of this function is straightforward to carry irreducible complexities, in that the integrals involved in its

out. Shifting the integration variable hy, rotating by 90° in evalu_ation cannot be evaluated in terms qf elementary or
the complex plane, multiplying by~ "™ and integrating, one special functions. Nevertheless, the evaluation of the cluster

immediately obtains sjze distribution in Iargg but finite realizations of the mean-
field version of percolation has been reduced to quadratures,
Y —(mMN~2B8-¢)% 3 and this is an interesting result.
Nm=N f dA| ex 6 & The next step is to test the validity of E@®.4). We have
- measured the distribution of cluster sizes for mean-field bond

(3.4 results are displayed in Figs. 2—7. The fit between the simu-
lations and Eq(3.4) is excellent below the percolation tran-
sition. Whent>0, so that the threshold for percolation in the
ethermodynamic limit” has been exceeded, a feature ap-
pears in the distribution in the form of a peak in the upper

x3 percolation on systems with various numbers of sitesThe
—AmN ?3{Im In f exp Ax+ =
Cc

Expression(3.4) represents the central analytical result
reported here. It embodies the expected scaling form of th
cluster size distribution, and represents the mean-field limi
of the distribution of cluster sizes in the case of short-range
bond percolation. As such, it ought to yield the distribution 2.5 1«

of cluster sizes on a lattice in more than six dimensions, six
2]
30 . t=2
[ag]
A 1.5
251 H 7 5 |
) 1 — Potts model
g 0O N=10,000
20 ] (=] 1 X N=40,000
S t=0 & & N=400,000
£
109 4 o N000 :
X N=40,000 : , e
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mN 2
FIG. 5. The cluster distribution whenr-2. Now the peak for the
mN'm spanning cluster is becoming distinct. The agreement between the

analytical prediction and the results of simulations is not nearly as
FIG. 3. The cluster size distribution wher=0. In the bulk  good in the vicinity of this peak as elsewhere in the figure. How-
limit, this is the exact location of the percolation transition. ever, the agreement improves with increased system size.
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3 When the interaction strength, is small, the nonzero solu-
»s B t=3 tion of this equation is
t u, t ugt? ot Ut
— 2 —
] ——+—¢gP~—+—x=—|1+—|. (3.

ST B WO Tw e Tw | e @9
QZ L5 X N=40,000

5] o N=400,000 The correction term in the brackets on the last line of Eq.

(3.6) vanishes as— 0. In terms of the mean-field correlation
length, it dies off ast~2. This last result follows from the
fact that the correlation length exponenis equal to3 in the
mean-field limit. In the case of a finite system, we can re-
place this rate of attenuation with 2«<N~2d, We replace

the dimensionality of the system by 6, in line with the con-
siderations annunciated above. Thus, it is reasonable to ex-
o ) pect that finite system results will converge to those expected
FIG. 6. The cluster distribution wher= 3. The spanning cluster to hold asymptotically adl~ Y3 Thus data for a system with
peak is well separated from the rest of the distribution. The agree;00 000 sites will be closer to the asymptotic predictions
ment between analysis and simulations is not good in the vicinity OEhan the data generated by a system with 40 000 sites, by a
the peak, but, as previously, it improves with increasing system .. ¢ 1332 15, Unfortunately, attempts to fit the con-
size. The tendency strongly indicates convergence. vergence to a power law in the size of the simulated system
did not lead to definitive results, so there is no unambiguous
Navidence for behavior associated with corrections to scaling.
Nevertheless, we are of the opinion that this represents the
‘most likely explanation for the difference between our ana-
lytical predictions and the results of our numerical investiga-

reaches of the distribution. This peak—which can be demo
strated to have an integrated weight of unity whds large
and positive—corresponds to the contribution of what be
comes the spanning cluster in the limit of an infinite system
As can be seen in Fig. 6, perfect agreement with simulation
is not achieved for any of the systems explored. On the other

hand, there is clear evidence for convergence between ex-

pression(3.4) and the results of numerical galculations as the IV. CONCLUSIONS

number of sites increases to fairly large values. We are con- Here we report a closed-form expression for the cluster
fident that a system with the sufficient number of sites will distribution function of a system in the immediate vicinity of
have a cluster distribution that is governed by E)4). the percolation transition. This expression constitutes the

A possible explanation of the slow convergence may lijowest order, mean-field approximation to the cluster distri-
in the behavior of the “next-to-leading” interaction vertex, pution function for short-ranged bond percolation. Simula-
the generator of leading order corrections to scaling. If weions on a system for which the closed form ought to repre-
take into account the fourth order coupling ing& model, sent an exact result produce results in agreement with
the mean-field equation of state in the infinite system has thgredictions based on that form. The next step is to correct the
form cluster distribution function by taking into account the ef-

fects of local fluctuations. That project is now underway.
tp—wWep?+u,ps=0. (3.5
APPENDIX: CLUSTER DISTRIBUTION

2 FROM THE MEAN-FIELD PARTITION FUNCTION

0 OF THE 1+ € STATE POTTS MODEL
- 2 The derivation of the generating functi¢®.3) in Ref.[5]

] -4 is long and fairly technical. In addition, the discussion in that
Z_ RS moge! reference relies on particular aspects of the “strict” mean-
°E,° P x NTZ‘&?SSO field version of the percolation problem, such as the fact that
gr e “active” bonds can connect sites separated by arbitrarily
= -10 great distances. This appendix contains a heuristic derivation
-12 of that result that starts from the standard field-theoretical

B e formulation of theg-state Potts model. The steps leading to
08 06 -04 02 0 02 04 06 038 an expression that is equivalent to £8.3) do not have the
log, (mN 23y same solid mathematical foundation as the arguments in Ref.

[5]. However, they are somewhat easier to follow. Further-

FIG. 7. A log-log plot of the distribution at the percolation tran- more, they lend themselves to the sort of generallzatlon_that
sition (t=0). In the infinite system, this plot would have the form allows for the treatment of short-ranged bond percolation.
of a straight line. In the finite system, a power law is obeyed until The authors are confident in the eventuality of a more com-
n=N23 This behavior is evident in the figure, and is displayed byPlete and rigorous version of the discussion below.
both the analytical form and the results of simulations. As in the The starting point in the mean-field calculation is the
previous figures, the agreement between analysis and simulations @inzburg-Landau expression for the partition function of the
best for the largest systems. The logarithms are base 10. g-state Potts modéB]
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the system on all states is equal to zero. The phase transition

that this model undergoes in the linit=0 is from a “para-

magnetic” phase, in which all states are equally occupied,

Xds;...ds;o(s;+- - +5g). (A1) and in which alls;'s are equal to zero, to a “ferromagnetic”

phase, in which one of the states is singled out. In this phase,
$,#0, ands,=s3="-=8;,=—s;/(q—1).

The quantityN is the number of sites. In the case of a con- To carry out the analysis we replace théunction in Eq.

tinuum system, this factor is replaced by the total volume(Al) by its Fourier representation. Then the partition func-

The & function in Eq.(Al) ensures that the net projection of tion is given by

J e[—r(s%-%—sg-%—'~~+s§)—w(s§+sg+-'~+sg’)+hsl]N

. q
f dQJ expl[ —r(si+ S5+ +50) —W(S]+s3+- -+ 83 +hs +iQ(s;+---+59) INH ds
i1

— o0

2m

q-1

J e—rst—sz3+iQst ) (AZ)

:f g J e_rNS%_WNsi'*'hNSl*'msldsl

The generating function for percolation cluster statistics isVe now shift the ) so as to eliminate the term
the result of taking the derivative with respectdoof the  2r2sw™*3N??in the exponential in Eq(A4), and a similar
partition function of theg-state Potts model aj=1 [11].  term in Eqg.(A5). Then we replacé) in the integrations by

The quantity of interest is, then, Q(Nw)*3, The argument of the logarithm is, then,
Joc @[fe—rNsi—szl?’-#thl-%—iﬂsldSl
— 27T j e_SSHQSdS. (A6)

XIn

f e—rst—WNs3+i&)st

L w

The resulting expression for the percolation generating func-

, _ tion is, then, equal to
For future reference, we note that, if the logarithmic term

in Eq. (A3) is replaced by a constant, then the integral over
s; and () yields a fundamentally uninteresting expression. r« dq)
This is because the integration o¥@deads to the generation f {f dslexp{
of the delta functiond(s;). What this means is that any
operation on the argument of the log that introduces a con- r3 .
stant multiplier produces a contribution to the percolation  + 2—7Nw*2+hN2’3\N*1’3sl+iQsl f e Sti0sgg ]
cluster generating function that can be discarded.
We now perform some changes of variable in the integra- (A7)
tion in the argument of the logarithm. Replacing the integra-
tion variables by s(Nw) 2 and then shifting the new to In order to ensure that the generating function is a real
s—rN~ Y3233, we transform the argument of the loga- quantity, we now specify that quantity to be the real part of
rithm to the above expression. It is also important to note that inte-
gration contours in the integral overmust be chosen with
13— _ care. The default choice will be a stationary phase contour
f exp{ — ™+ s[ION" w24 5 r2w N ds, that approaches the positive real axis as on the right hand
(A4) side of the complex plane. The integration ogeglis simpli-
fied as the result of the argument below.

1 3
—| s+ §I‘N1/3\N2/3>

2w

In

1
Sy 3TNV 28

where constant multiplicative factors have been discarded. At this point we argue that the integrals overand Q
Re_sgghng the integration variabls; by the factor yie|d zero when the integration variabdg is negative. The
(Nw) "%, we find, for the integral over that variable, essence of the argument is that in that case the integration

3 over ) can be closed in the lower half plane, and that the

(NW)fllsJ' ex;{— logarithm contains no singularities there. The regularity of
the integrand in th€) integration is readily established along

1 [3 the negative imaginary axis. A general demonstration has not

+ = r2N?3w~*8s; + ——Nw 2+ hN?3w 135, been accomplished. However, we are bolstered in our belief

3 27 that the assertion above is true for two reasons. The first is

that the result that this leads to is identical in all important

ds,. (A5)  aspects to a result previously obtained with the use of an

+iQ(Nw) 3,
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entirely different approacfb]. Additionally, the cluster dis- o dQ (=

tribution function that would have resulted if one were to wa 27 Jo ds;exp — 3
allow negative values of; to contribute to the expression

above predicts clusters consisting of a negative number of

1 3
ESP.

3
r
+ —=Nw 2+ hN¥3w 135 + Qs

sites. The absence of a firm justification for this portion of 27

the derivation is the weak point in the present discussion.

However, we are confident in both the correctness of the < 1m In fe_53+ﬂsds. (A8)
result and that a convincing demonstration of this portion of

the derivation can be constructed. The integral over the variable follows a stationary phase

As the final stage in the development of our expressiorcontour. As the two last steps in the creation of the expres-
for the generating function for percolation cluster statisticssion for the cluster statistic generating function, we replace
we rotate the contour in the integration ov@r Instead of the integration variable by —s and the integration variable

. ; _ ; ; Q by —Q. With an appropriate choice of the third order
|i1t.<iogra£ng fﬁ.om t;o tt?hoo’ welmtegt]ra;[‘et;])veﬂ from .'oo t.o th coupling strengthw, a shift in the integration variabl@ and

' i e_ca '”9 at the real par 0, e expresspn 1S €0me changes of notation, we are led to 833). It is worth
contribution of interest, we end up with the following result yoting that the scaling implicit in Eq3.3) can be seen ex-

for the percolation generating function: plicitly in result (A8).
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