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Cluster distribution in mean-field percolation: Scaling and universality

Joseph Rudnick and Paisan Nakmahachalasint
Department of Physics, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1547

George Gaspari
Department of Physics, University of California at Santa Cruz, Santa Cruz, California 95064

~Received 31 December 1997!

The partition function of the finiteq-state Potts model in the limitq→1 is shown to yield a closed form for
the distribution of clusters in the immediate vicinity of the percolation transition. Various important properties
of the transition are manifest, including scaling behavior and the emergence of the spanning cluster.
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I. INTRODUCTION

One of the aspects of bond percolation that has captu
the imagination of researchers is the collection of scal
properties that emerge in the vicinity of the transition
which the spanning cluster emerges@1#. These scaling prop
erties manifest themselves in various correlation functio
They also control the distribution of clusters in the vicini
of the percolation transition. An adjunct of these scali
properties are quantities that areuniversalat the percolation
transition. Universality reflects the insensitivity of behavi
at and near the transition to details, and follows from
dominating influence of long range correlations. In this
gard, the percolation transition is an example of a criti
point. The generating function for cluster distributions~the
Laplace transform of the cluster distribution function! plays
the role of the thermodynamic potential.

The extension of scaling to finite systems is, in princip
as straightforward for the percolation transition as for co
ventional critical phenomena. Finite size scaling@2# is based
on the assumption that the extent of a system,L, has ‘‘na-
ive’’ scaling dimensions, in that it enters into thermodynam
functions only in combination with the correlation lengthj
through the ratioL/j.

There are, however, difficulties in the application of sta
dard field-theoretical methods to the study of the percola
transition in a finite system. Bond percolation reduces t
f3 theory @3#. Because of this, there is no immediately o
vious way to construct the version of mean-field theory t
commonly applies to finite systems@4#. The integral over the
exponential of the free energy is not nominally converge
However, previous research@5,6# has led to the developmen
of a method for the construction of the generating funct
for percolation on a finite lattice in the case of both lon
@7,8# and short-range percolation. This approach avoids
singularities that are inherent in the standard implementa
of the integral corresponding to the mean-field limit of t
finite size partition function. However, the derivation is n
rigorous, and, for this reason, there is room to argue that
problem of the field theory of percolation on a finite latti
has not been entirely solved.

As noted above, the field-theoretic approach yields
generating function for cluster statistics. However, the ‘‘ho
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grail’’ of cluster statistics is the distribution functionnm
c , the

average number of clusters containingm sites. Given a suf-
ficiently well-characterized generating function, one can,
principle, reconstitute the distribution function, by a form
the inverse Laplace transformation. The fact that the gen
ating function is consistent with scaling leads to general
ferences with regard to the form of the cluster distributi
function. However, detailed and specific behavior of t
cluster size distribution can only be derived from a spec
form for the generating function.

In this paper, we extract, from previously derived resu
for the generating function of a finite percolating system
closed-form expression for the cluster distribution functio
This closed form displays key attributes of the transitio
including consistency with scaling and the separation fr
the distribution of a single large cluster that, in an infin
system, becomes the spanning cluster.

The closed form described above is tested against the
sults of simulations, and agreement is documented. In
case of systems for which the percolation transition has
curred, the convergence between theory and simulation
slow. However, the evidence for convergence is sufficien
strong that we are confident in the accuracy of the theoret
model.

The present calculation is relevant to long-range perco
tion, in that bonds can form between sites separated by
arbitrarily large distance. This model is a poor representa
of the kind of bond percolation that occurs in most physi
settings. On the other hand, there is every reason to bel
that it generates the proper mean-field limit for short-rang
percolation@9#. According to well-accepted results based
scaling considerations, the mean-field theory of the perc
tion transition is asymptotically accurate for short-rang
percolation in more than six spatial dimensions@3#. Finally,
the strict mean-field model of percolation is also a model
interest in its own right in the context of the theory of ra
dom graphs@10#.

In this infinite-range model of percolation, the probabili
that a bond connecting two sites is ‘‘active’’ scales invers
with the number of sites in the system. On the other ha
any such bond can form between any two sites in the syst
in contrast to short-range versions of the model, in wh
active bonds connect only those sites that are reason
5596 © 1998 The American Physical Society
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PRE 58 5597CLUSTER DISTRIBUTION IN MEAN-FIELD . . .
close to each other. If the probabilityP that a given bond is
active is of the formP5p/N, whereN is the number of
sites, the percolation transition occurs whenp51. Critical
exponents at the transition take on their mean-field limits.
be specific, the correlation function exponentn is equal to1

2 ,
while the anomalous dimension exponenth is equal to zero.
The thermodynamic exponents are all expressible in term
n and h through scaling and hyperscaling relations. Wh
the system’s dimensionality enters a scaling or hypersca
relationship, it is commonly set equal to the upper critic
value of 6. It should be noted that the ‘‘proper’’ dimensio
ality for this system is infinity, in that, in the thermodynam
limit, the effective coordination number is infinity.

The analysis of this model exploits the connection b
tween the percolation generating function and the statist
mechanics of the one-state limit of theq-state Potts mode
@11# established by Fortuin and Kasteleyn@12#. A number of
field-theoretical treatments of percolation are based on
above relation@3#.

II. BRIEF REVIEW OF SCALING

The generating function for cluster sizes is given by

F~p,h!5(
m

nm
c ~p!e2mh, ~2.1!

wherenm
c (p) is the ensemble average of the number of cl

ters containingm sites@12#. In the vicinity of the percolation
transition (p'pc , where pc is the critical probability! the
generating function takes on the scaling form

F„pc~11Dp!,h…→uDpu22a f S uDpub1a22h,
Dp

uDpu D .

~2.2!

The exponentsa andb, which correspond to the thermody
namic exponentsa andb @13#, control the asymptotic behav
ior of various aspects of the cluster size distribution. F
example, thel th moment of the cluster distribution function
given by

^ml&5
(mmlnm

c

(nnm
c 5

~21! l
dl

dhl F~p,h!U
h50

F~p,0!
, ~2.3!

acquires a scaling form that is readily obtained from E
~2.2!.

In the mean-field limit, the two exponentsa andb take on
the following values:

a522dn52263
1

2
521, ~2.4!

b5n
d221h

2
5

1

2
3

622

2
51. ~2.5!

The scaling form in Eq.~2.2!, along with the relationship
between the generating function and the cluster size distr
tion @Eq. ~2.1!# implies the following cluster size distribu
tion:
o

of
n
g
l

-
al

e

-

r

.

u-

nm
c 5uDpu422a2bXS muDpu22a2b,

Dp

uDpu D . ~2.6!

When there is a finite number of sites in the system,
cluster size distribution incorporates the number of sites,N,
by taking on the more general scaling form

nm
c 5uDpu422a2bXS muDpu22a2b,

uDpudn

N
,

Dp

uDpu D .

~2.7!

In the mean-field limit, the exponentn is equal to1
2 , and, as

noted above, the dimensionality is set equal to 6. The wa
which the number of sites,N, enters reflects the fact that
scales as thedth power of the linear extentL of the system.

III. CLUSTER SIZE DISTRIBUTION

The distribution of cluster sizes in mean-field percolati
follows directly from the application of the connection to th
Potts model. This result was based on an analysis of
mean-field version of theq-state Potts model in the limitq
→1 @5#. In the calculation leading to a closed-form expre
sion for the generating function of the mean-field Po
model, limits were taken in the proper order, although
final result was obtained with the use of nonrigorous ar
ments. Making the replacements

p511N21/3t, ~3.1!

h5HN22/3, ~3.2!

then the generating function takes the following form:

F~p,h!→E
2`

`

dDS H E
0

`

expF2~L2t !3

6
2

t3

6
2DL GdLJ Im

3 lnH E
c

expF ~D1H !x1
x3

6 GdxJ D 1Kc . ~3.3!

The contour integration in Eq.~3.3! is over a contour in the
complexx plane that extends from2` on the real axis tò
along a curve, making an angle of 60° with respect to
positive real axis. See Fig. 1. For details, see Ref.@5#. The
Appendix contains a heuristic derivation of the expression

FIG. 1. The contour utilized in the evaluation of the integral
Eq. ~3.3!.
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Eq. ~3.3!. This derivation is based on the evaluation of t
Ginzburg-Landau form of the partition function of th
q-state Potts model.

The inversion of this function is straightforward to car
out. Shifting the integration variable byD, rotating by 90° in
the complex plane, multiplying bye2 imh and integrating, one
immediately obtains

nm
c 5N22/3È`

dDS expF2~mN22/32t !3

6
2

t3

6

2DmN22/3G Im lnH E
c

expFDx1
x3

6 G J D . ~3.4!

Expression~3.4! represents the central analytical res
reported here. It embodies the expected scaling form of
cluster size distribution, and represents the mean-field l
of the distribution of cluster sizes in the case of short-ran
bond percolation. As such, it ought to yield the distributi
of cluster sizes on a lattice in more than six dimensions,

FIG. 2. The cluster size distributionnm
c , multiplied by N2/3,

plotted againstmN22/3, wherem is the size of the cluster andN is
the number of sites in the system. The graph in this figure is ft
521, where the quantityt is defined in Eq.~3.1!. The system is
close to the percolation transition, but the transition has not yet b
reached. Note the excellent agreement between the solid curve
resenting the predictions of Eq.~3.4!, and the results of simulation
for N510 000, 40 000, and 400 000. The quantities plotted in t
and in all subsequent figures are dimensionless.

FIG. 3. The cluster size distribution whent50. In the bulk
limit, this is the exact location of the percolation transition.
t
e
it
e
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being the upper critical dimension for short-range bond p
colation @3#. In addition, it constitutes the ‘‘zeroth order’
distribution, about which one expands to obtain the clus
size distribution in bond percolation in lower dimensionalit
Two characteristics of the distribution function in Eq.~3.4!
are worthy of note. First, there is the fact that itis in a closed
form. Second, there is the fact that the expression cont
irreducible complexities, in that the integrals involved in
evaluation cannot be evaluated in terms of elementary
special functions. Nevertheless, the evaluation of the clu
size distribution in large but finite realizations of the mea
field version of percolation has been reduced to quadratu
and this is an interesting result.

The next step is to test the validity of Eq.~3.4!. We have
measured the distribution of cluster sizes for mean-field b
percolation on systems with various numbers of sites,N. The
results are displayed in Figs. 2–7. The fit between the sim
lations and Eq.~3.4! is excellent below the percolation tran
sition. Whent.0, so that the threshold for percolation in th
‘‘thermodynamic limit’’ has been exceeded, a feature a
pears in the distribution in the form of a peak in the upp

en
ep-

s

FIG. 4. The cluster size distribution whent51. The system is
just above the percolation transition, and the incipient spann
cluster has begun to emerge. The signature in the distribution fu
tion is a barely visible feature.

FIG. 5. The cluster distribution whent52. Now the peak for the
spanning cluster is becoming distinct. The agreement between
analytical prediction and the results of simulations is not nearly
good in the vicinity of this peak as elsewhere in the figure. Ho
ever, the agreement improves with increased system size.
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PRE 58 5599CLUSTER DISTRIBUTION IN MEAN-FIELD . . .
reaches of the distribution. This peak—which can be dem
strated to have an integrated weight of unity whent is large
and positive—corresponds to the contribution of what
comes the spanning cluster in the limit of an infinite syste
As can be seen in Fig. 6, perfect agreement with simulati
is not achieved for any of the systems explored. On the o
hand, there is clear evidence for convergence between
pression~3.4! and the results of numerical calculations as
number of sites increases to fairly large values. We are c
fident that a system with the sufficient number of sites w
have a cluster distribution that is governed by Eq.~3.4!.

A possible explanation of the slow convergence may
in the behavior of the ‘‘next-to-leading’’ interaction verte
the generator of leading order corrections to scaling. If
take into account the fourth order coupling in af3 model,
the mean-field equation of state in the infinite system has
form

tf2wf21u4f350. ~3.5!

FIG. 6. The cluster distribution whent53. The spanning cluste
peak is well separated from the rest of the distribution. The ag
ment between analysis and simulations is not good in the vicinit
the peak, but, as previously, it improves with increasing sys
size. The tendency strongly indicates convergence.

FIG. 7. A log-log plot of the distribution at the percolation tra
sition (t50). In the infinite system, this plot would have the for
of a straight line. In the finite system, a power law is obeyed u
n}N2/3. This behavior is evident in the figure, and is displayed
both the analytical form and the results of simulations. As in
previous figures, the agreement between analysis and simulatio
best for the largest systems. The logarithms are base 10.
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When the interaction strengthu4 is small, the nonzero solu
tion of this equation is

f5
t

w
1

u4

w
f2'

t

w
1

u4t2

w3 5
t

w S 11
u4t

w2 D . ~3.6!

The correction term in the brackets on the last line of E
~3.6! vanishes ast→0. In terms of the mean-field correlatio
length, it dies off asj22. This last result follows from the
fact that the correlation length exponentn is equal to1

2 in the
mean-field limit. In the case of a finite system, we can
place this rate of attenuation withL22}N22/d. We replace
the dimensionality of the system by 6, in line with the co
siderations annunciated above. Thus, it is reasonable to
pect that finite system results will converge to those expec
to hold asymptotically asN21/3. Thus data for a system with
400 000 sites will be closer to the asymptotic predictio
than the data generated by a system with 40 000 sites,
factor of 101/3'2.15. Unfortunately, attempts to fit the con
vergence to a power law in the size of the simulated sys
did not lead to definitive results, so there is no unambigu
evidence for behavior associated with corrections to scal
Nevertheless, we are of the opinion that this represents
most likely explanation for the difference between our an
lytical predictions and the results of our numerical investig
tions.

IV. CONCLUSIONS

Here we report a closed-form expression for the clus
distribution function of a system in the immediate vicinity
the percolation transition. This expression constitutes
lowest order, mean-field approximation to the cluster dis
bution function for short-ranged bond percolation. Simu
tions on a system for which the closed form ought to rep
sent an exact result produce results in agreement w
predictions based on that form. The next step is to correct
cluster distribution function by taking into account the e
fects of local fluctuations. That project is now underway.

APPENDIX: CLUSTER DISTRIBUTION
FROM THE MEAN-FIELD PARTITION FUNCTION

OF THE 1 1e STATE POTTS MODEL

The derivation of the generating function~3.3! in Ref. @5#
is long and fairly technical. In addition, the discussion in th
reference relies on particular aspects of the ‘‘strict’’ mea
field version of the percolation problem, such as the fact t
‘‘active’’ bonds can connect sites separated by arbitra
great distances. This appendix contains a heuristic deriva
of that result that starts from the standard field-theoret
formulation of theq-state Potts model. The steps leading
an expression that is equivalent to Eq.~3.3! do not have the
same solid mathematical foundation as the arguments in
@5#. However, they are somewhat easier to follow. Furth
more, they lend themselves to the sort of generalization
allows for the treatment of short-ranged bond percolati
The authors are confident in the eventuality of a more co
plete and rigorous version of the discussion below.

The starting point in the mean-field calculation is t
Ginzburg-Landau expression for the partition function of t
q-state Potts model@3#
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E e[ 2r ~s1
2
1s2

2
1¯1sq

2
!2w~s1

3
1s2

3
1¯1sq

3
!1hs1]N

3ds1 ...dsqd~s11¯1sq!. ~A1!

The quantityN is the number of sites. In the case of a co
tinuum system, this factor is replaced by the total volum
Thed function in Eq.~A1! ensures that the net projection
i
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n

n
y
o

ion

ra
ra

a-

d

-
.

the system on all states is equal to zero. The phase trans
that this model undergoes in the limith50 is from a ‘‘para-
magnetic’’ phase, in which all states are equally occupi
and in which allsi ’s are equal to zero, to a ‘‘ferromagnetic
phase, in which one of the states is singled out. In this ph
s1Þ0, ands25s35¯5sq52s1 /(q21).

To carry out the analysis we replace thed function in Eq.
~A1! by its Fourier representation. Then the partition fun
tion is given by
1

2p E
2`

`

dVE exp$@2r ~s1
21s2

21¯1sq
2!2w~s1

31s2
31¯1sq

3!1hs11 iV~s11¯1sq!#N%)
i 51

q

dsi

5E dV

2p E e2rNs1
2
2wNs1

3
1hNs11 iVs1ds1F E e2rNs22wNs31 iVsdsGq21

. ~A2!
nc-
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The generating function for percolation cluster statistics
the result of taking the derivative with respect toq of the
partition function of theq-state Potts model atq51 @11#.
The quantity of interest is, then,

E
2`

` dV

2p H E e2rNs1
2
2wNs1

3
1hNs11 iVs1ds1

3 lnF E e2rNs22wNs31 iVsdsG J . ~A3!

For future reference, we note that, if the logarithmic te
in Eq. ~A3! is replaced by a constant, then the integral o
s1 and V yields a fundamentally uninteresting expressio
This is because the integration overV leads to the generatio
of the delta functiond(s1). What this means is that an
operation on the argument of the log that introduces a c
stant multiplier produces a contribution to the percolat
cluster generating function that can be discarded.

We now perform some changes of variable in the integ
tion in the argument of the logarithm. Replacing the integ
tion variables by s(Nw)21/3 and then shifting the news to
s2rN21/3w22/3/3, we transform the argument of the log
rithm to

E exp$2s31s@ iVN21/3w21/31 1
3 r 2w24/3N2/3#%ds,

~A4!

where constant multiplicative factors have been discarde
Rescaling the integration variables1 by the factor

(Nw)21/3, we find, for the integral over that variable,

~Nw!21/3E expF2S s11
1

3
rN1/3w22/3D 3

1
1

3
r 2N2/3w24/3s11

r 3

27
Nw221hN2/3w21/3s1

1 iV~Nw!21/3s1Gds1 . ~A5!
s

r
.

n-

-
-

.

We now shift the V so as to eliminate the term
1
3 r 2sw24/3N2/3 in the exponential in Eq.~A4!, and a similar
term in Eq.~A5!. Then we replaceV in the integrations by
V(Nw)1/3. The argument of the logarithm is, then,

E e2s31 iVsds. ~A6!

The resulting expression for the percolation generating fu
tion is, then, equal to

E
2`

` dV

2p H E ds1expF2S s11
1

3
rN1/3w22/3D 3

1
r 3

27
Nw221hN2/3w21/3s11 iVs1G lnF E e2s31 iVsdsG J .

~A7!

In order to ensure that the generating function is a r
quantity, we now specify that quantity to be the real part
the above expression. It is also important to note that in
gration contours in the integral overs must be chosen with
care. The default choice will be a stationary phase cont
that approaches the positive real axis as on the right h
side of the complex plane. The integration overs1 is simpli-
fied as the result of the argument below.

At this point we argue that the integrals overs and V
yield zero when the integration variables1 is negative. The
essence of the argument is that in that case the integra
over V can be closed in the lower half plane, and that t
logarithm contains no singularities there. The regularity
the integrand in theV integration is readily established alon
the negative imaginary axis. A general demonstration has
been accomplished. However, we are bolstered in our be
that the assertion above is true for two reasons. The firs
that the result that this leads to is identical in all importa
aspects to a result previously obtained with the use of



to
n
r
o

io
th
o

io
cs

th
lt

es-
ce

r

-

PRE 58 5601CLUSTER DISTRIBUTION IN MEAN-FIELD . . .
entirely different approach@5#. Additionally, the cluster dis-
tribution function that would have resulted if one were
allow negative values ofs1 to contribute to the expressio
above predicts clusters consisting of a negative numbe
sites. The absence of a firm justification for this portion
the derivation is the weak point in the present discuss
However, we are confident in both the correctness of
result and that a convincing demonstration of this portion
the derivation can be constructed.

As the final stage in the development of our express
for the generating function for percolation cluster statisti
we rotate the contour in the integration overV. Instead of
integrating from2` to `, we integrate overV from i` to
2 i`. Recalling that the real part of the expression is
contribution of interest, we end up with the following resu
for the percolation generating function:
-

.

of
f
n.
e
f

n
,

e

E
2`

` dV

2p E
0

`

ds1expF2S s11
1

3
rN1/3w22/3D 3

1
r 3

27
Nw221hN2/3w21/3s11Vs1G

3Im lnF E e2s31VsdsG . ~A8!

The integral over the variables follows a stationary phase
contour. As the two last steps in the creation of the expr
sion for the cluster statistic generating function, we repla
the integration variables by 2s and the integration variable
V by 2V. With an appropriate choice of the third orde
coupling strengthw, a shift in the integration variableV and
some changes of notation, we are led to Eq.~3.3!. It is worth
noting that the scaling implicit in Eq.~3.3! can be seen ex
plicitly in result ~A8!.
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